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Quantitative microbiology with widefield
microscopy: navigating optical artefacts
for accurate interpretations
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Time-resolved live-cell imaging using widefield microscopy is instrumental in quantitative
microbiology research. It allows researchers to track and measure the size, shape, and content of
individual microbial cells over time. However, the small size of microbial cells poses a significant
challenge in interpreting image data, as their dimensions approache that of themicroscope’s depth of
field, and they begin to experience significant diffraction effects. As a result, 2D widefield images of
microbial cells contain projected 3D information, blurred by the 3Dpoint spread function. In this study,
we employed simulations and targeted experiments to investigate the impact of diffraction and
projection onour ability to quantify the size andcontent ofmicrobial cells from2Dmicroscopic images.
This study points to some new and often unconsidered artefacts resulting from the interplay of
projection and diffraction effects, within the context of quantitative microbiology. These artefacts
introduce substantial errors and biases in size, fluorescence quantification, and even single-molecule
counting, making the elimination of these errors a complex task. Awareness of these artefacts is
crucial for designing strategies to accurately interpret micrographs of microbes. To address this, we
present new experimental designs and machine learning-based analysis methods that account for
these effects, resulting in accurate quantification of microbiological processes.

Widefield fluorescence microscopy is a cornerstone of quantitative micro-
biology, allowing for noninvasive, real-time imaging of individual cells. This
technique’s capacity to measure the size, shape, and content of individual
microbial cells has advanced several areas of quantitative microbiology
research, including studies on size regulation and division control in
bacteria1–3, regulation and noise in gene expression4–6, and analysis of
interactions between cells and their environments7,8. Additionally, imaging
individualmolecules within cells using this technique has enabled the study
of the dynamics and organisation of individual genes,mRNAs and proteins,
and has facilitated the construction of accurate distributions of their
abundance9,10. In essence, live-cell widefield microscopy plays a pivotal role
indeveloping a comprehensive understandingof biological processeswithin
and between microbial cells, offering insights into their organisation,
dynamics, and regulation across different scales.

However, careful scrutiny is required for the extraction of quantitative
microbiological information from microscopy data. The size of most
microbes (particularly bacterial cells) is comparable to the dimensions of the
microscope’s point-spread function (PSF)11, resulting in significant dif-
fraction effects on bacterial cell images (blur). Moreover, the thickness of
bacterial cells is roughly equivalent to the depth of field (DoF) of a

microscope objective. Consequently, 2D widefield images of microbes
contain projected 3D information containing diffraction from the 3D PSF.
The interplay of projection and diffraction effects can bias the estimation of
cell size, shape, and intensity. Additionally, these factors hinder the quan-
tification of low copy-number molecules like mRNAs and transcription
factors fromsingle-molecule counting experiments10 asmolecules at varying
depths exhibit varying degrees of defocus, overlap in the 2D projection, and
coalesce into a single blurred spot due to diffraction. Systematically ana-
lysing these effects to understand their impact on the accurate interpretation
of microscopy data has proven challenging due to the lack of accurate
ground-truth information.

To address this challenge, we utilised SyMBac (Synthetic Micrographs
of Bacteria), a virtual microscopy platform (which we introduced in a
previous work12) capable of generating synthetic bacterial images under
various conditions. This tool allows us to assess diffraction and projection
effects through forward simulation. The SyMBac-generated images come
withprecise ground-truthdata, enablingus to accurately quantify errors and
biases in different measurements and offer control over a wide range of
parameters, encompassing optics, physics, and cell characteristics (size,
shape, intensity distribution and fluorescent label type). Consequently, we
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can analyse how these factors affect image formation and feature extraction.
Moreover, the virtual microscopy setup allows us to explore imaging
parameters that may be difficult or impractical to realise in actual experi-
ments but are crucial for identifying important variables by amplifying their
effects.

In this paper,we use SyMBac to systematically investigate the impact of
projection and diffraction on the accurate quantification of three key
aspects: (1) cell dimensions, (2)fluorescence intensity of individual cells and
(3) counts of individually labelled entities per cell. To validate the findings
from our virtual microscopy experiments, we conducted targeted real
experiments with variable optical settings. Our analysis revealed previously
unrecognised artefacts arising from the interplay of projection and dif-
fraction effects. These artefacts introduce significant errors and biases in the
estimationof cell size, intensity, andmolecule counts, proving challenging to
rectify. Recognising these effects and devising appropriate mitigation stra-
tegies is crucial for accurate quantificationofmicrobiological processes from
microscopy data. To this end, we have demonstrated that understanding
these effects enables designing ‘smart-microscopy’ experiments, along with
analytical protocols that minimise their impact while facilitating accurate
data interpretation for estimating cell size and content measurements.

Results
Digital widefield fluorescence microscopy experiments
We employed the SyMBac virtual microscopy platform to conduct digital
experiments mimicking widefield epifluorescence microscopy, the techni-
que typically used for time-resolved live-cell microbial imaging13,14. In this
configuration, microbial cells are sandwiched between a glass coverslip and
a biocompatiblematerial like agarose or PDMS, as they are imaged through
the cover glass via the microscope’s objective lens, which can be either
upright or inverted (Fig. 1a).

In these settings, themicroscope objective has a dual role: it focuses the
excitation beam, illuminating the sample through the cover glass and col-
lects emitted photons from the entire sample, focusing them on the camera

to form the image (Fig. 1a). The excitation light illuminates the entire
sample, inducing fluorescence throughout. The objective collects emitted
light from various planes along the sample’s Z-axis within its depth of field.
Each of these planes in the Z-axis introduces blurring due to the 3D PSF,
resulting in the projected 2D image, which comprises contributions from
each Z-plane. Each contribution is differentially blurred according to its
relative distance from the focal plane and the corresponding slice of the 3D
PSF (Fig. 1b). The interplay of projection and diffraction effects in image
formation presents significant challenges in accurately extracting the
ground-truth distribution of the emitters, as elaborated below.

Effects of projection and diffraction on cell size estimation
We start by examining how projection and diffraction impact the quanti-
fication of cell size and shape from 2D fluorescence images. The extent of
blurring due to “diffraction effects” is linked to the 3D PSF’s size, which
depends on the imagingwavelength, the numerical aperture of the objective
lens, and any aberrations within the optical system. Consequently, diffrac-
tion effects exhibit wavelength-dependent characteristics for a fixed objec-
tive lens. In our digital simulations and real experiments, we employed PSFs
of different wavelengths to investigate how diffraction impacts error and
bias inmeasurements. Conversely, the manipulation of the depth of field in
the imaging setup reveals the influence of “projection effects.” Using
SyMBac, we can selectively toggle projection or diffraction effects, thus
allowingus tomodel each effect in isolationby either capturing light froman
infinitesimally thin plane or omitting convolutionwith the PSF, as shown in
Fig. 2a, g. These “nonphysical” experiments are instrumental in identifying
and understanding each underlying effect and its contribution
independently.

Errors and biases in size estimation frommembrane-
stained images
To define cell boundaries, quantitative microbiologists often use a mem-
brane stain, a fluorescent dye that highlights the cell membrane (or the cell

Fig. 1 | Projection and diffraction effects in widefield fluorescence image for-
mation. a Schematic optical paths for sample illumination (blue) and emission
(green) collection on the camera for image formation in an epi-fluorescence setup.
Emitters in the midplane of the cell are in focus. b A stepwise illustration of image
formation of a cell uniformly filled with fluorescent emitters. Light from emitters at

various planes of the cell is diffracted by the corresponding plane of the 3D point
spread function (PSF). Images from multiple planes at various sample depths are
projected on top of each other to form the final 2D image of the cell. Further details
on the image formation process are given in Supplementary Information 1. All scale
bars are 0.5 μm.
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wall, or a tagged fluorescent protein which localises to the cell’s periplasm),
creating a bright outline in the image15. Researchers have developed algo-
rithms to identify the cell boundary by either setting a threshold on the
brightness of the membrane-stained cells or by locating the brightest
contour16,17. To assess the errors and biases in our estimation of cell
boundaries from images of membrane-stained cells, we generated digital
images of bacteria stained with a membrane marker. When we isolate the
effects of projection and diffraction in synthetic images of a membrane-
stained cell, we observe that projection causes a notable shift of the intensity
distribution towards the cell’s centre. This shift is further illustrated in

Fig. 2b, in the corresponding radial intensity profile. Such a shift leads to an
underestimation of cell dimensions, especially cell width, which is typically
estimated from the interpeak distance. Diffraction further exacerbates this
intensity shift towards the centre, resulting in an even greater under-
estimation ofwidth. Themagnitude of this shift is influenced by the imaging
wavelength, as expected due todiffraction (as shown inFig. 2c).Note: In this
discussion, we have focused on cell width estimation from the interpeak
distance of radial intensity profiles of such images, due to its pronounced
error sensitivity compared to cell length and its quadratic influence on cell
volume, significantly affecting overall size estimation.
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Our digital experiments indicate that in a typical widefield imaging
setup using a 515 nm emission fluorescent dye and a 1.45NA objective, the
width of a 1 µm wide cell is underestimated by approximately 20%, and a
0.5 µm wide cell is underestimated by 40% (Fig. 2c). The extent of under-
estimation is higher for dyes with longer wavelength (Fig. 2c) and for cells
narrower than 0.6 µm inwidth, stainedwith a red fluorescent dye (emission
wavelength = 700 nm), two separate peaks are not observable due to dif-
fraction blur (Fig. 2i), meaning the width cannot even be estimated. These
findings underscore the major biases and limitations of this method for cell
size estimation in existing literature.

To validate the predictions fromour digital experiments, we labelled the
peptidoglycan layer of individualE. coli cells with two distinct stains emitting
at different wavelengths (HADA= 450 nm and RADA= 580 nm), both
beingfluorescent D-aminoacids (FDAAs).Weexpect these stains to integrate
into the same location in the peptidoglycan layer. However, radial intensity
profiles revealed a notable inward shift in the intensity peaks of the longer
wavelength dye (RADA) compared to the shorter-wavelength counterpart
(HADA) (inset - Fig. 2d), consistent with our simulated profiles in Fig. 2c.
Analysing 137 cells, we found that RADA,with the longer wavelength, led to
significantly more underestimation of cell width compared to HADA (see
Fig. 2e, with additional image examples in Supplementary Information 2).
These results validate our prediction about diffraction effects on width esti-
mation. However, since the effects of diffraction on the peak position is
dependent on the extent of projection, these effects cannot be eliminated by
deconvolution using the PSF, as 2D deconvolution is unable to eliminate the
projection effects (shown in Fig. 2f and Supplementary Information 3). 3D
deconvolution would partially address this problem, but it is not compatible
with single-plane widefield images that are typically acquired during time-
resolved imaging of microcolonies. Instead, using superresolution imaging
where diffraction effects are minimised (such as SIM, STED, or PALM18–21)
could help, or employing an imaging system with a shallower depth of field
compared to the cell depth (such as a confocalmicroscope) could also reduce
the effects ofprojectionandmitigate the resulting shift fromdiffractioneffects
(detailed in Supplementary Information 4).

Errors and biases in size estimation from images of cells uni-
formed filled with markers
Alternatively, researchers often use thresholding algorithms to segment
bacterial cell images based on uniformly distributed fluorescence of mole-
cules within the cytoplasm22–27. Various thresholding algorithms are
employed to segment cells from their fluorescence images, but each has
biases and sensitivities that are challenging to quantify and correct (Sup-
plementary Information5).Toquantitatively assess the impactof projection
and diffraction on extracting cell dimensions from these types of images, we
rely on estimating cell width from the full width at halfmaximum (FWHM)
of the radial profile of the intensity.

Unlike in our previous analysis of membrane-stained cells, projection
and diffraction have opposite effects on size quantification for cytoplasm-
stained cells. Projection effects cause the intensity distribution to shift toward
the centre, leading to a bias towards underestimation of cell width from

FWHM,while diffractioneffects result in light bleedingout,making the radial
profile wider than their projected version (see Fig. 2g, h). We demonstrate
that increasing the depth of projection leads to an underestimation of cell
dimensionsbeyondacritical cellwidth (Supplementary Information4),while
higher imaging wavelengths result in increased image blur from diffraction,
leading to a bias towards overestimated dimensions. The diffraction effect is
also apparent in brightfield/phase-contrast images. In Supplementary
Information 6, we compare radial profiles of phase-contrast images of the
same cell collected with different emission filters. The results reveal that
phase-contrast images collectedwithblue emissionfilters exhibit significantly
sharper features and narrower profiles than those collectedwith red emission
filters. Results from image segmentation of phase-contrast or brightfield
images of bacteria are affected by such biases and should be corrected for28,29.

It is important to note that both imaging approaches (membrane-
stained or cytoplasm-labelled) exhibit biases in cell dimension esti-
mation that strongly depend on the actual cell dimensions. Figure 2i
shows that the relative width-estimation bias from themembrane image
decreases as cell width increases, while the estimates from the cyto-
plasmic marker exhibit an opposite, but less pronounced effect. In the
case of membrane-stained images, the shifts from projection and dif-
fraction happen in the same direction, while they oppose each other in
case of cytoplasmically-labelled images. An accurate model of the
imaging system can be used to calculate correction factors for a given
wavelength, which could then be applied to estimate the true dimen-
sions from the observed profile. Virtual microscopy platforms, such as
SyMBac, could be utilised to simulate these effects to computationally
estimate such correction factors (Supplementary Information 7).
However, it is difficult to recover the outline of an individual cell to
accurately estimate size and shape using this approach. In the following
section, we exploremethods for incorporating these effects into training
deep learning image segmentation models, enabling the models to
accurately estimate cell sizes and shapes from 2D images.

Deep learning approaches for precise quantification of cell
dimensions
There has been a surge in the popularity of deep learning approaches for cell
image segmentation30–35. However, the accuracy of these models is inher-
ently linked to the quality of their training data. Generating training data for
microscopic images of microbes presents unique challenges compared to
standard computer vision tasks. Here, projection and diffraction effects are
comparable to object dimensions and, as a result, impede computational
boundary identification, as mentioned in our previous work12. Manual
annotation is also affected because 2D images lack clear boundaries and
contain intensity gradients. In essence, the images are blurry. To evaluate the
performanceof humanannotators,weprovided themwith synthetic images
with accurate ground truths and conducted a benchmarking experiment.
Supplementary Information 8 details this experiment and the corre-
sponding results, revealing that human annotator performance is not only
highly variable but also consistently exhibits an underestimation bias
stemming from projection effects.

Fig. 2 | Effects of projection and diffraction on cell size estimation. a Synthetic
images of a stained cell membrane demonstrate the independent and combined
effects of diffraction and projection on 2D image formation (scale bar = 1 µm).
Diffraction effects were simulated using the experimentally measured instrumental
PSF (iPSF) of our imaging system. bRadial profiles of intensity (across the cell width)
from each panel from a are compared to show the relative shifts caused by projection
and diffraction effects. The black dotted line indicates the true position of the cell
boundary. c Radial profiles of synthetic-cell images with two wavelengths of iPSFs
are shown. Lower wavelengths (green) cause smaller shifts, as expected from a
smaller size of the PSF. d Example images of a cell stained with fluorescent D-amino
acids HADA and RADA are shown. As expected, intensity traces across the cell’s
width show RADA (red) emission is more diffracted than HADA (blue) emission,
and the diffraction is biassed towards the centre of the cell. e A plot showing the
average measured width of a population of cells stained with HADA and RADA

(error bar = 99% CI). Inter-peak distances from radial profiles of RADA images
consistently underestimate the width more than HADA images. f Comparison of
radial profiles before and after deconvolution shows that deconvolution does not
shift and correct the peak position; it only makes the profile sharper. g Synthetic
images of a digital cell, uniformly filledwith fluorescence emitters, show the effects of
diffraction and projection on 2D image formation (scale bar = 1 µm). hWe compare
the radial intensity profile (across the cell width) with and without projection and
diffraction effects corresponding to the panels in g. The black dotted line indicates
the true position of the cell boundary. iTrendlines from synthetic data show that the
observed/true width ratio is dependent on the cell width, with the error growing
rapidly for narrow cells. The trends, however, occur in opposing directions for
membrane-stained cells and cytoplasm-labelled cells. Estimated widths are calcu-
lated from the interpeak distance in membrane-stained cells and full width at half
maximum (FWHM) of the radial profile of cytoplasm-labelled cells.
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Inaccuracies and biases in training data, whether originating from
computational thresholding or human annotation, compromise the
integrity of object-image relationships, thereby leading to the corrupted
performance of deep-learning models. The subsequent analysis shows
that the highly versatile Omnipose algorithm (specifically
bact_fluor_omni)30, when trained on human-annotated synthetic
fluorescence images, compromises its efficacy in cell segmentation
(Fig. 3). This phenomenon parallels findings from our recent
publication12, where we demonstrated that the segmentation outputs
from pretrained models inherit biases from their training datasets,
resulting in significant variability in segmentation outcomes andmarked
deviations from the ground-truth distribution.

The virtual microscopy pipeline offers an advantage in addressing
the issue of user subjectivity and bias in training data. One can generate
realistic synthetic microscopic images of microbes accompanied by
accurate ground-truth information (Fig. 3a). Training deep-learning
models with such synthetic training data enables the models to learn
precise object-image relationships (detailed in Supplementary

Information 9, Supplementary Information 10, and ref. 12) and miti-
gates the problem of inaccuracies and user subjectivity in traditional
training data. The same Omnipose model, when retrained with syn-
thetic data, produces a segmentation output that more accurately
predicted the ground-truth information in the test data, as demon-
strated in the ground-truth mask comparisons (Fig. 3b) and input-
output size distributions (Fig. 3c). The comparison of cell size dis-
tributions indicates that Omnipose training data contain enlarged
cell masks.

To experimentally verify and validate the enhanced performance of the
retrained Omnipose model compared to the pretrained version, we devised
a new assay that leverages the tight width regulation of bacteria36. This
involved placing a high density of cells on agar pads, capturing images of
both isolated cells and cell clusters, and then estimating the ground-truth
widths of individual cells based on their average width in aligned space-
filling patches (further explained in Supplementary Information 10). The
average cell widths estimated from the patches were tightly distributed
(0.94 ± 0.066 μm). The estimated mean width from the patch analysis

Fig. 3 | Accurate boundary estimation with deep-learning models trained with
synthetic images. a SyMBac can be used to generate synthetic training-data, con-
taining realistic images and accompanying perfect ground-truth, to retrain image
segmentation models. Illustrative examples of synthetic images and ground-truth
pairs are shown for trainingOmnipose to learn cellmasks from images of cytoplasm-
stained samples (top) and images of membrane-stained samples (bottom). b Using
synthetic data as ground truth, we can check the performance of the pretrained
bact_fluor_omni model. To alleviate the effects of human annotation quality, we
retrained themodel on samples of simulated agar-pad data generated using SyMBac.
Examples of validation data, with ground-truth masks and mask outputs from the
pretrained and retrained models are shown. To compare ground-truth masks and
output masks, each is coloured based on its total area, and the colurmap is given
below (scale bar = 2 µm). cComparison of the output distribution of cell sizes shows
that the pretrained model does not reconstruct the underlying ground truth dis-
tribution, whereas the output distribution from the SyMBac-trained model more
closelymimics the underlying distribution. dTo show that synthetic data also boosts
segmentation accuracy on real data, we analysed patches of densely packed cells to
find groups of cells aligned across their long axis. Since cell width is tightly con-
trolled, we can use these patches of aligned cells to estimate a value for the true
populationmeanwidth (full analysis is given in Supplementary Information 10).We

then generated training data matching the real data’s experimental parameters and
retrained Omnipose. The resulting distribution of widths for isolated cells and cells
within dense colonies is plotted for both the pretrained and retrained model,
showing that retraining on synthetic data makes width estimation more accurate.
(Ground truth: 0.94 ± 0.066 μm, pretrained: 1.2 ± 0.10 μm, SyMBac trained:
0.94 ± 0.062 μm). eUsing synthetic data of membrane-stained cells as ground truth,
we trained an Omnipose model to segment cells. We compared the output widths to
thosewidthsmeasured by calculating the interpeak distance between the labelled cell
walls/membranes, as shown in Fig. 2. (Mask colour represents cell width, and the
colurmap is given below, scale bar = 2 µm). f The fractional underestimation of a
membrane-stained cell’s width (given by the interpeak distance) is highly dependent
upon the width itself, and the imaging wavelength. This is true for a cell imaged in
widefield, where the DoF is approximately equal to its width (Width DoF in the
legend). Training Omnipose on synthetic data of membrane-stained cells makes the
deep-learning model (DL) insensitive to the scale of the cell, as well as the imaging
wavelength, unlike the interpeak distance method (error bar = 1 SD). gComparison
of the output mask width distribution of the two simulated datasets to the ground-
truth mask width distribution shows that when trained on appropriate synthetic
data, the entire population distribution can be faithfully reconstructed irrespective of
the imaging wavelength.
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shouldmatch the averagewidths of isolated individuals, as the cells were not
grown on the agarose pad and therefore, were not allowed to differentially
adjust to the imaging environment. Subsequently, the widths obtained from
this analysis were compared with those derived from the segmentation
outputs of both the pretrained Omnipose model (1.2 ± 0.10 μm) and the
retrained model using synthetic images (0.94 ± 0.062 μm). The results
demonstrate that the retrained Omnipose model exhibits both higher pre-
cision and accuracy in estimating cell widths compared to its pretrained
counterpart (Fig. 3d). The comparison of masks presented in Supplemen-
tary Information 11 reveals that the original Omnipose model generates
substantially larger masks for isolated cells than for cells within clusters,
resulting in significant variability and bias in the predicted cell width. In
contrast, the output masks from the Omnipose model retrained with syn-
thetic data demonstrate robust performance.

Motivated by these results, we explored an additional application of
this approach in the analysis of membrane-stained images; we retrained
the Omnipose model with pairs of synthetic fluorescent images of
membrane-stained cells and corresponding ground truths (Fig. 3a—
bottom). The estimated cell outline from the contour of the membrane-
stained images (as described in ref. 37) significantly underestimated the
cell area compared to the ground truthmasks (Fig. 3e). The relative error
in width estimation was size and wavelength dependent (Fig. 3f), con-
sistent with the previous discussion. Conversely, the comparison of
output masks from the retrained Omnipose and the ground-truth cell
masks illustrates the high accuracy and precision of the deep-learning
model. The model robustly learns the offset created by diffraction and
projection as a function of size, and the estimated width closely tracks
the ground truth across a wide range of input widths and in a
wavelength-independent manner (Fig. 3f, g). The combination of these
digital experiments and real experiments illustrates how synthetic
training images can capture the subtle effects of projection and dif-
fraction and augment our capabilities of estimating true cell sizes using
deep-learning models.

Quantifying fluorescence intensities of individual cells
Next, we address the issue of quantifying the intensity of individual cells
from their fluorescence images. Measuring the total fluorescence
intensity of labelledmolecules within a cell is crucial for estimating their
abundance. This capability enables researchers to monitor the
dynamics of cellular processes using time-resolved single-cell image
data38. The variation in signal intensities among individual cells within
the population and over time offers insights into the key regulatory
variables and noise sources39.

Usually, for the sake of experimental simplicity, microcolonies of
microbial cells are cultivated on agarose pads27. This setup enables the
tracking of individual cell intensities over time and the comparison of
intensities among colony cells at different time points. However, such
experimental designs, including microfluidic devices with densely
packed cells40,41, introduce a significant artefact in single-cell intensity
measurements due to a combination of diffraction and projection
effects from the imaging system. The PSF of an imaging system dis-
perses light away from its source. In the context of a cell filled with
fluorescent emitters, the emitted light extends beyond the true cell
boundaries, making solitary cells appear dimmer (see Fig. 4a, b). In
densely packed clusters, the dispersed light is erroneously attributed to
neighbouring cells. We previously termed this phenomenon ‘light
bleedthrough’42. Light bleedthrough substantially distorts intensity
estimates of cells within a colony, leading to misinterpretations of the
strength and noise in gene expression levels, as explained below.

With the SyMBac virtual microscopy system, we can quantify these
effects and verify them through experiments on real microcolonies (see
example images of synthetic microcolonies in Fig. 4, real examples in
Fig. 4d). Crucially, while measuring the instrumental PSF (iPSF) of one’s
microscope is a standard procedure, they are not typically imaged over a
domain large enough to capture the effects of light bleedthrough at long

distances (> ~15 μm for high NA objectives), since the signal to noise ratio
becomes low. Thus, we pursued analytical fits to the iPSF to extend its range
for simulating long-range diffraction effects. The most suitable method
involves extracting the pupil, followed by reconstructing a phase-retrieved
PSF which includes appropriate aberrations43. However, as detailed in
Supplementary Information 12, although the reconstructed PSF effectively
captured the aberrations in our system, it failed to replicate the long-range
effects observed in the iPSF. A theoretical PSF (tPSF) model44 gave a much
betterfit to the entire iPSF (Supplementary Information 13).However, since
we are interested in simulating the long-range effects of diffraction, one
must extrapolate the function domain of the fitted PSF. We found that the
tPSFdidnot extrapolatewellwhenfitted to a cropof the iPSF.We, therefore,
resorted to an ad hoc empirical function fit, which we call an “effective” PSF
(ePSF), which we verified was able to extrapolate to the entire function
domain despite being fitted on only a small crop of the iPSF (see Supple-
mentary Information 14). All simulations of light bleedthrough effects in
microcolonies were carried out using this ePSF model.

Colony size affects single-cell intensity quantification
Our simulations suggest that, due to the loss from light bleedthrough, an
isolated cell appears only 30% as bright as its true intensity (Fig. 4c). 70% of
the intensity is lost to the surroundings andcanendup innearby cells.As the
microcolony size increases, more neighbouring cells contribute to the
intensity of cells within the colony through the light bleedthrough effect.
Consequently, the mean intensity of cells within a simulated microcolony
rises monotonically with colony size, reaching 70% of the true intensity in
very large colonies (>1000 cells, see Fig. 4b, c). As the colony size tends to
infinity, the mean intensity of an individual cell should converge to the true
mean intensity, since all the lost intensities are allocated to other cells within
the colony. These simulations predict that individuals within a colony of a
hundred cells should appear, on average, 2–2.5 times brighter than isolated
cells (Fig. 4c).

To validate these predictions, we conducted experiments with micro-
colonies on agar pads, comparing the intensity of cells within colonies of
different sizes with that of isolated cells. To ensure a consistent intensity
distribution among all cells, we placed a high density of cells on agar pads
and captured instantaneous images of cell clusters, rather than allowing
colonies to form gradually, which could introduce temporal intensity var-
iations. This method allowed us to obtain ‘preformed microcolonies’ of
varying sizes whilemaintaining the original cellular content distribution. As
expected from the analysis of simulatedmicrocolonies, snapshots of real cell
clusters clearly show higher intensity in cells from larger colonies compared
to isolated cells (see Fig. 4d). The intensity distributions of cells in large
‘preformed colonies’ (number of cells >300) do not overlap with those of
isolated individuals (see Fig. 4e). The trend in Fig. 4f, which illustrates the
mean intensity of cells relative to their preformed colony sizes, is qualita-
tively similar to the trend predicted from the digital experiments. Never-
theless, themagnitude of bleedthrough effectswitnessed in the experimental
microcolonies exceeds that of the simulated colonies. This disparity may
arise from themismatch between the long-distance tails of the ePSF and the
actual iPSF of the system, the possible contribution of scattering in the
imaging medium, or field-dependent aberrations not captured in our
simulations.

Light bleedthrough affects noise and correlations in single-cell
intensity measurements
The light bleedthrough effect goes beyond its impact on mean intensity,
introducing subtle local variations in individual cell intensities. Since the
degree of bleedthrough depends on the number of neighbouring cells, the
intensity of individual cells varies based on their position within the colony
(Fig. 5). Cells closer to the centre, receiving contributions from more
neighbours, appear brighter in images than those near the edges (see
Fig. 4b, d). Consistent with the predictions from our digital simulations of
microcolonies, the experimental data reveal a correlation between spatial
intensity patterns, the number of neighbouring cells, and intra-colony
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position, (see Fig. 5a–c). Additional example images of microcolonies from
imaging experiments are shown in Supplementary Information 15.

Such phenomena, where the intensity of individuals appears to be
dependent on their position or number of neighbouring cells, can lead
to misinterpretations in quantifying intensity correlations and cellular
heterogeneity5,8. It may wrongly suggest that an individual cell’s
intensity is influenced by interactions with neighbouring cells, incor-
rectly implying nonexistent biological mechanisms. In studies using
intensity distribution patterns as evidence of cell-cell interactions,
researchers should consider the confounding influence of optical
effects and implement appropriate controls to differentiate genuine
biological interactions from optical artefacts7. The use of digital control
experiments via virtual microscopy platforms, like SyMBac, can help
identify potential artefacts specific to a given experimental design,
including optical specifications and sample configurations.

Light bleedthrough effects also cause a major artefact in noise esti-
mation from single-cell data, which is somewhat counterintuitive. In the
absence of true population variability (coefficient of variation, CV = 0),
positional factors within the microcolony and the number of neighbouring
cells can artificially introduce variability and result in a higher estimated CV
(Fig. 5d). Conversely, when substantial variation exists among cells, the PSF

acts as a smoothing filter, redistributing intensity from brighter to dimmer
cells (see Fig. 5d, e), leading to an underestimation of inherent variability.
These paradoxes emphasise the complexities introduced by diffraction
effects in the temporal quantification of gene expression variability. They
produce similar results across different underlying distributions (further
examples in Supplementary Information 16) and present challenges for
correction because the effect’s magnitude and direction depend on an
unknown ground truth CV, as well as the size and shape of the
microcolonies.

It is conceivable that one could leverage deconvolution to correctly
assign light to specific pixels in the image. In actual image formation, the
PSF has an infinite range, leading to long-range diffraction effects
accumulating within dense microcolonies. This results in diffracted
light potentially ending up several pixels away from the original point
source. However, deconvolution methods applied in the literature
sometimes use kernel sizes far smaller than the data and thus merely
result in a sharpening of the image, failing to accurately reassign light
from beyond the kernel’s boundaries. This phenomenon is illustrated
using experimental and simulated images in Supplementary Informa-
tion 17 and 18. As shown in Fig. 5e, where deconvolution is performed
with a kernel measuring 125 × 125 pixels, only amarginal improvement

Fig. 4 | Colony size affects single-cell intensity quantification—real and
synthetic data. a The radial intensity profile of a simulated fluorescence cell illus-
trates how intensity is lost from the cell contours due to diffraction effects (scale
bar = 0.5 μm). b Example snapshots of simulated fluorescence images of a growing
microcolony using a 100× 1.49 NA objective’s instrumental point spread function
(iPSF). All cells in the simulation have identical ground truth intensities. Isolated
cells and individual cells in smallmicrocolony sizes show low cell intensities, while as
the colony grows larger, cells in dense regions, such as at the centre of the colony,
begin receiving more light contributions from surrounding cells, artificially
increasing their perceived intensity. (Scale bar = 2 μm). c As colony size increases,
the mean observed intensity of each cell in the colony also increases (Error bars =
99% CI). Relative changes in intensity compared to isolated individual cells are

shown on the left-hand y-axis. Cells approach the true mean intensity as the colony
size increases, as shown on the right-hand y-axis.dA false-coloured image of cells on
a real agarose pad showing ‘preformed’microcolonies of various sizes, along with a
single cell (white arrow). The relative intensity scale is shown on the right. Important
features to note are the similarity to the simulated data shown in (b) (Scale
bar = 10 μm). e The intensity distribution of cells depends on the size of the clusters
they belong to. Isolated individual cells have low mean intensities, while cells from
preformed microcolonies with more than 50 cells have 3× higher mean intensities.
f Experimental data shows that the average intensity of cells increases with the
population size of microcolonies (shown in orange). The trend from simulated
colonies is shown in blue.
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in noise estimation accuracy is seen. Ideally, the deconvolution should
use a kernel size as large as the data being deconvolved. Since such a
large iPSF is unattainable, deconvolution with the full ePSF was per-
formed. While it gave a marked improvement over the iPSF, it was
unable to fully recover the underlying ground truth intensity distribu-
tion in experimental data (Supplementary Information 17).

Microfluidic imagingplatforms for robust intensity quantification
Given the challenges associated with accurately knowing the PSF and the
exact configuration of cells within a microcolony, the task of estimating the
true intensities of individual cells, especially for quantifying noise or cor-
relations, becomes nearly impossible. Additionally, the influence of pro-
jection and scattering effects and potential inhomogeneities in the growth
environment45 is hard to eliminate. Therefore, we suggest that, considering
knowledge of diffraction effects, researchers could design their experiments
differently. For instance, utilising a structured imaging platform, where cells
are maintained at a fixed distance from each other, can help minimise the
bleedthrough effects.

To systematically analyse the constraint on such an imaging platform,
in our simulations on an array of digital cells, we explored how the extent of
intensity bleedthrough depends on the inter-cell distance in such an array
(Fig. 6a). The percentage bleedthrough contribution from neighbouring
cells is plotted as a function of distance along the short and long axes of cells
(x and y, respectively) (Fig. 6b). The heatmap illustrates that in a closely
packed array, shown in the left-top corner, the intensity of individual cells
receives an additional ~100%contribution fromneighbours, causing cells to
appear 2x brighter than isolated cells—a finding consistent with our earlier
discussion. To reduce the light bleedthrough effects to <1% of the true
intensity, cells need tobe at least 10μmapart fromeachother (a conservative
estimate based on the ePSF).

Microfluidic devices, such as the ‘mother machine’2, provide a
viable solution for maintaining cells at a fixed, constant distance from
one another. This device keeps cells in short vertical arrays placed at a
specific distance apart. By selecting the appropriate spacing between
these arrays through specific device design and optimisation,
researchers can effectively eliminate the bleedthrough effect, allowing

Fig. 5 | Light bleedthrough corrupts estimates of correlation and variance in
single-cell intensities. a Schematic representation of a cell (green) some distance
from the centre of the microcolony, with its neighbouring cells labelled (lighter
green). The intensity of individual cells depends on their position within the
microcolony, given by dc/D, where dc is the distance from the colony centre, andD is
the colony diameter, and the number of direct neighbours (cellN).bCells closer to the
centre of a simulated colony appear brighter than cells at the periphery due to light
bleedthrough (Error bars = 99% CI, data sample averaged for colonies of size
20–1000 cells). The position-dependent trend predicted from simulated micro-
colonies (green) is consistent with experimental results (orange). c Simulated cells

with more neighbours appear brighter (Error bars = 99% CI, data sample averaged
for colonies of size 20–250) consistent with experiments (orange). d Two simulated
colonies with CVs of 0.01 and 0.22, respectively, along with their convolution with
the iPSF, showing that their observedCVs are very similar despitemarkedly different
underlying cell intensity distributions. e At low noise, true CV < 0.15, where the
underlying cell intensity distribution is uniform, the PSF causes artificial position-
dependent variation in cell intensities (increasing CV). Conversely, when the input
CV is high (true CV > 0.15), the PSF acts as a blurring filter, lowering the variance in
the population by allocating intensities from brighter cells to neighbouring dimmer
cells (lowering CV).
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for accurate estimation of the heterogeneity and fluctuation dynamics
of intensities from individual cells46.

To assess the effect of bleedthrough in these scenarios, we con-
ducted experiments by mixing unlabelled cells with fluorescently
labelled cells in the mother machine (black and red coloured cells in
Fig. 6c and d respectively). Details of the experimental design, analysis,
and results are shown in Supplementary Information 19. Intensities of
unlabelled cells, as a function of the number and distance of their
neighbouring fluorescent cells, were calculated to estimate the per-
centage bleedthrough effect. The results from this analysis, along with
data from a previous paper using a similar approach46, show a quanti-
tative match with the simulated trends. A distance of >10 μm between
trenches is sufficient to reduce the extent of bleedthrough to below ~1%.
Microfluidic device design and performance verification, using digital
microscopy experiments, should be routinely employed to estimate and
eliminate unwanted optical effects in microscopy data.

Counting single molecules
Quantifying the abundance of low-copy tagged molecules introduces
unique challenges. When the collective fluorescent signal from these
tagged molecules approaches the background autofluorescence of the
cell, interpreting intensity values in terms of abundance becomes
complex. In the case of species with moderately low copy numbers per
cell (approximately 50–100 copies per cell), some researchers have
employed techniques like background deconvolution4. However, these

methods fall short of achieving single-cell resolution since they
deconvolve the entire distribution along with autofluorescence levels.
Moreover, these distribution deconvolution techniques are ineffective
for proteins with very low copy numbers (less than 20), which often play
critical roles in gene expression regulation, including gene copy num-
bers, transcription factors (TFs), mRNAs and plasmids47. To reliably
quantify the abundance of low-copy proteins, it is essential to count
individual fluorescently tagged molecules within a cell48.

Accurately determining the copy number of labelled molecules
remains a formidable task due to the interaction of the diffraction limit and
the 2D projection of 3D-distributed emitters. In 2D images, individually
tagged molecules manifest as diffraction-limited, blurry spots, with the
extent of blur contingent upon their distance from the focal plane. Conse-
quently, when spots are positioned closer to each other than the resolution
limit (in the XY plane, regardless of their position in Z, due to projection)
they can merge into a single spot in the projected image. Adding to the
complexity, the 3D characteristics of the PSF make it difficult to detect out-
of-focus spots (Fig. 7a). Both of these effects collectively contribute to an
underestimation of themolecule count, evenwhen there are only two copies
per cell.

In Fig. 7b, we illustrate the extent of undercounting from various
sources using digital imaging experiments. We employ a “naive counting”
criterion, as described in the Methods section, which includes the enu-
meration ofmolecules that are out of focus, those that are undercounted due
to proximity to diffraction-limited spots, and the cumulative count of both

Fig. 6 | Intensity bleedthrough characterisation using simulated array and
microfluidic experiments. aA simulated array of cells with controllable x and y cell
pitch. The grid corresponds to the heatmap in panel b, with increased x and y spacing
between cells lowering the intensity bleedthrough from neighbours. b The heatmap
shows the overall intensity bleedthrough percentage of a cell within an ordered array
of neighbours as a function of inter-cell distance. c Characterisation of intensity
bleedthrough from distant cells within the mother machine microfluidic device. A

schematic representation of the mother machine is given, along with a phase-
contrast image taken of the same device, with the (mCherry) fluorescence channel
overlaid to indicate labelled and unlabelled cells. Varying the spacing between
mother machine trenches affects the amount of light bleedthrough incurred.
d Bleedthrough from within a single trench in the mother machine; an unlabelled
cell’s intensity is measured and its apparent intensity increases as the number of
additional labelled cells within a trench increases, despite it being unlabelled.

https://doi.org/10.1038/s44303-024-00024-4 Article

npj Imaging |            (2024) 2:26 9



individual and cluster molecules perceived as singular due to the diffraction
limit. This approach allowsus to identify error sources that are influencedby
cell dimensions (spot density and projection) and experimental setups
(diffraction and depth of field). The results in Fig. 7c show that, when the
count is small (n = 5), most spots are isolated, resulting in minimal losses
due to diffraction effects. However, increasing the cell thickness (from cell
radius = 0.5 μm to radius = 1 μm) leads to a significant fraction of spots
becoming undetectable as they get blurred and dimmed due to the defo-
cused PSF. On the other hand, as the molecular count increases, there is a
corresponding increase in the proportion of molecules that are under-
counted due to the diffraction limit since an increase in spot density leads to
an increase in the fractionof spots beingunresolvable fromtheirneighbours.
However, the proportion ofmolecules lost due to defocus remains constant,
dependent solely on the volume fraction of the cell situated outside the focal
plane (Fig. 7d).

This digital experiment reveals that the combined effects of pro-
jection and diffraction lead to substantial undercounting, even for
molecules present in very low quantities; in an average-sized bacter-
ium, a single snapshot may incorrectly count only two molecules as a
single entity approximately 5% of the time (Supplementary Informa-
tion 20). The proportion of undercounting escalates rapidly with the
increase in the number of molecules present per cell, as depicted in
Fig. 7d, and for a copy number of 15 molecules per cell, one under-
estimates by 40%.

Smart-microscopy approaches for improving counting
performance
The term ‘smart-microscopy approaches’ denotes utilising domain
knowledge of a specific imaging system and subject to craft targeted
microscopy solutions, encompassing both acquisition and analysis. To
improve counting performance, knowledge of the depth-dependent detec-
tion probability and the cell volume can be leveraged to calculate a cor-
rection factor, addressing the loss of molecules due to defocus. At the focal
plane, amoleculewill bemost in focus, andgiven that it is bright enough,will
exceed a threshold SNR for detection. The probability of exceeding this SNR
threshold decreases as themolecule shifts out of the focal plane.We call this
probability function D(z). We derived this empirical depth-dependent
detection probability function for our imaging system from the instru-
mental PSF (shown in Fig. 8a and detailed in Supplementary Informa-
tion 21).

Upon closer examination, we observed that this function is offset from
the objective’s focal plane because of the asymmetric nature of the iPSF
along the Z axis. To maximise the number of detectable molecules within a
cell, it is necessary to optimise the overlap between the cell’s cross-section
and this function. A cell’s cross-sectional density is given in red as a(z)
(Fig. 8a). The integral of a(z) between two z positionswithin the cell will give
the volume fraction, and hence the fraction of molecules between those
positions (assuming a uniform distribution of emitters within the cell). The
detection probability D(z) can be shifted by focusing the microscope’s

Fig. 7 | Single particle counting errors from the combined effect of projection and
diffraction. a Schematic of an epifluorescence single molecule imaging setup, where
the position of emitters within the cell determines the extent of defocus in their
image and determines their detection probability. bMolecules in a cell exist in three
dimensions. Shown are nine molecules in a digital cell and their ground truth
positions projected in xy. Upon convolution with the PSF, the resultant image is a
projection of all nine molecules, of which only three are in focus. The remaining six
molecules are dim and hard to detect, and two of them are very close. c Simulated
sampling of points within a digital cell shows ‘naive’ detection bounds and sources of

undercounting. If points had an SNR lower than the 99th percentile of the back-
groundPSNR, theywere considered too dim to detect. Additionally, if twomolecules
are within 1 Rayleigh criterion of one another, they are considered too close to
resolve, and thus these molecules are lost due to diffraction. The remaining popu-
lation of molecules are considered countable. d Relative contributions of each mode
of undercounting (lost to diffraction and lost to defocus) are plotted as a function of
the true count ofmolecules in a narrow cell (r = 0.5 μm) and a thicker cell (r = 1 μm).
The resolvable fraction decreases rapidly with increasing density of molecules,
whereas the detectable fraction stays constant.
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objective up and down. Thus, the overlapping area between these two
profiles (given by the cross-correlation a(z)★D(z) gives an estimate of the
fraction of the molecules which will be observed, for all shifts of D(z). To
maximise the number of molecules detected, one can shift the objective by
anoptimal amount, givenby δzoptimal, which iswhere the two functionshave
maximum overlap (Fig. 8a).

Once the focal plane is adjusted, we can compute the fraction of
molecules lost to the out-of-focus volume to find an empirical correction
factor (Fig. 8b). This correction leads to improved counting performance,
but only on averaged counts, as demonstrated inFig. 8d.Alternatively, using
microfluidic platforms toflatten cells can bring a largernumber of spots into
focus (Fig. 8b). Additionally, the expanded cross-section of the flattened
cells in the imaging plane slightly reduces the undercounting effect caused
by the diffraction limit (Fig. 8c), consistent with previous findings in the
work of Okumus et al. (Microfluidics-Assisted Cell Screening—MACS)10,49.

To further improve the counting performance, we explored the
potential of designing an image analysis pipeline that leverages knowledgeof
defocus and spatial patterns from simulated data to enhance counting
accuracy. To pursue this, we retrained Deep-STORM, a well-established
deep-learning network designed for super-resolving single-molecule

images50. Deep-STORM leverages a convolutional neural network archi-
tecture to super-resolve single molecules based on local intensity patterns
and spatial relationships. We have trained the Deep-STORM model using
simulated synthetic images, which contain a varying number of spots with
appropriate defocus depending on their positionwithin the digital phantom
cells (Fig. 8d). This training enabled themodel to consistently andaccurately
count molecules to a larger copy-number (Fig. 8e) compared to the naive
counting estimates and the performance demonstrated in previous research
in this field10.

Just as observed with deep-learning models used for cell segmen-
tation (discussed in the “Deep-learning approaches for informed cell
segmentation” section), training these models with realistic synthetic
data significantly enhances their ability to detect single molecules. Our
previous analysis demonstrates that flattening the cells using platforms
like MACS reduces the fraction of defocused spots and emulates a
situation in which most spots are in focus (Fig. 8b). Indeed, Deep-
STORM models, when implemented in a simulated MACS type sce-
nario, performed reliably up to a very large number of molecules per cell
(>~25 molecules/cell, Fig. 8e).

Fig. 8 | Smart microscopy approaches to improve counting performance. a The
depth-dependent probability function D(z) of an imaging system is shown in blue.
The cell’s cross-sectional density is given in red as a(z). The overlapping area
between these two profiles (given by the cross-correlation a(z)★ D(z)) gives an
estimate of the fraction of the molecules which will be observed. To maximise the
number of molecules detected, one can shift the objective by an optimal amount,
given by δzoptimal, which is where the two functions have maximum overlap. b A
schematic showing a cell in the optimal focal position relative to the detection
probability function, thus detecting the maximum number of molecules possible.
The true number of molecules can then be estimated by multiplying the observed
count (green) by a correction factor (accounting for the lost molecules, shown in
black), which intuitively is the reciprocal of the overlapping area (full derivation in

Supplementary Information 21). Another approach to detecting more molecules is
to modify a(z) by physically compressing the cell (using Microfluidics-Assisted Cell
Screening (MACS)), bringing the entire cell’s volumewithin themaximum region of
D(z). cApplying the correction factor or compressing the cell usingMACS improves
the counting performance compared to the naive estimate. Both of these approaches
reduce the error from defocus, but undercounting errors at higher counts occur due
to diffraction effects. d A schematic architecture of the Deep-STORM single
molecule localisation network is shown, which was trained using synthetic single
molecule images. e Applying Deep-STORM to molecule counting improves per-
formance, but combining it withMACS leads to near-perfect detection and counting
up to a higher density of molecules.
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Discussion
Theadvancementof quantitativemicrobiology relies heavily on the accurate
interpretation of microscopy data. We have employed virtual microscopy
experiments and targeted real experiments to systematically explore the
challenges and potential pitfalls associated with using microscopy data to
quantify the size and content ofmicrobial cells. Our focus was on projection
and diffraction effects, particularly significant for microbial cells due to
their size.

Ourfindings reveal significant impacts of projection and diffraction on
the performanceof image segmentation algorithms in accurately identifying
cell outlines from fluorescence and brightfield images of bacteria. Both
traditional segmentation techniques and machine-learning approaches
experience biases in cell size estimation. The extent and direction of this bias
depend on various factors, including labelling methodologies, imaging
configurations and the cell’s dimensions, whichmakes it difficult to correct.
However, we found that the bias and error can be mitigated when using
machine-learning methods trained with synthetic data that incorporates
these effects.

Timelapse imaging methodologies, commonly employing agar pads
and microfluidic devices, are frequently utilised for investigating live-cell
gene expression dynamics and heterogeneity39–41,51. Using digital image
simulations and experimental fluorescence imaging of cell clusters, we
found that the accurate quantification of true cellular fluorescence signals in
clustered configurations (‘microcolonies’), is difficult due to diffraction-
inducedmisallocation of light intensity from adjacent cells. Such distortions
impact both the estimation of expression variation and correlation analyses
conducted on these platforms5,7,8,52. Deconvolution can improve, but not
entirely eliminate, these artefacts and its fidelity to ground truth strictly
depends on the precision and size of the deconvolution kernel. In this case,
experimental design changes, such as the use of imaging platforms like
microfluidic devices, where cells can be kept at specified distances, can
reduce such distortions42,46.

Similar challenges arise in the quantification of low copy number
moieties, such as mRNA, plasmids, or proteins, complicating the accurate
counting ofmore thanfive individualmolecules.Caution iswarrantedwhen
interpreting ‘single-molecule’ images and results from estimated molecular
‘counts.’ To address these challenges, alternative experimental designs and
deep-learning-based analysis protocols were proposed and substantial
improvements in counting accuracy were demonstrated.

In summary, the analysis presented here underscores the critical
importance of understanding the artefacts and aberrations incorporated
into microscopy data to extract meaningful information about micro-
biology, whether it involves the shape and size of cells or their content from
intensity measurements or single-molecule counting. We advocate for the
routine use of digital experiments with virtual microscopy platforms to test
limitations of experimental design and potential optical illusions, ensuring
‘informed’ interpretations of imaging data. This knowledge can further
inform the design of ‘smart microscopy’ experiments, leveraging domain
knowledge to create appropriate imaging platforms and machine-learning
models trainedwith relevant ‘synthetic images.’The analysis and discussion
presented in this paper should guide improved experiment design and help
with quantitative interpretation of microscopy experiments in
microbiology.

Methods
Computational methods
Virtual fluorescence microscopy using SyMBac. In this study, image
simulations were conducted utilising the SyMBac Python library12.
Unless specified otherwise, all virtual fluorescence microscopy images
were generated following a consistent workflow: 1. The 3D spher-
ocylindrical hull of a digital cell was positioned within a defined envir-
onment—either (a) isolated, (b) among scattered cells, or (c) within a
microcolony if colony growth simulation data were available. 2. Fluor-
escent emitters were uniformly sampled within the cell volume and
indexed within a 3D array, the value at each index denoting the emitter

count. For cells with homogeneously distributed fluorescence, a “density”
value was established, defined as the average number of emitters per
volumetric element within a cell. Thus, the total number of molecules
within a cell was calculated as the product of this density and the cell
volume. 3. Subsequently, diffraction and projection effects were simu-
lated through the convolution of this dataset with a point spread function
(PSF). Convolution was executed employing either a theoretical, effec-
tive, or instrumentally measured PSF (tPSF, ePSF, or iPSF respectively).
The PSF_generator class within SyMBac was used to generate synthetic
PSFs in accordance with the model from Aguet44. To simulate the pro-
jection and out-of-focus light characteristic of a widefield fluorescence
microscope, the centre of the point spread function (PSF) is assumed to
be aligned with the midplane of the cell. Each slice of the PSF is
accordingly convolved with the corresponding slice of the cell, as illu-
strated in Fig. 1b, Supplementary Information 22, and Supplementary
Information 23. If using a tPSF or ePSF, convolution is done at a high
resolution, and then downsampled to the pixel size of the simulated
camera in order to capture the high-frequency features of the kernel.

To artificially modulate the depth of field of the microscope and
thereby mitigate projection artefacts, the number of PSF planes convolved
with the cell can be truncated. For instance, in a 1 µmwide cell simulated at a
pixel size of 0.0038 µm, there would be 263 slices in the Z-direction. To
generate an image devoid of projection artefacts, only the middle Z-slice of
the cell is convolved with the middle Z-slice of the 3D PSF. This method is
applicable for both simulated and empirically measured PSFs. To eliminate
diffraction effects, the PSF can be substitutedwith an identity kernel, which,
upon convolution, reproduces the original data. To modulate the effect of
diffraction continuously, the frequency of light employed to simulate the
kernel can be arbitrarily adjusted.

Simulations of fluorescence images of individual cells. To preclude
errors stemming from length underestimation in width assessments,
digital cells with a fixed length of 6 μm were utilised. The cell width was
manipulated to range between 0.5 and 3.0 μm, while the simulated depth
of field was adjusted between 3 μm (for the widest cell) and 0.0038 μm
(for a single Z-slice). The PSF generator was configured to “3dfluo”mode
for 3D convolution, employing the model from Aguet44. Additionally, an
identity kernel served as the PSF for a theoretical undiffractedmicroscope
with an imaging wavelength of 0 μm.

To simulate images of cells with cytoplasmic fluorescent markers, 3D
spherocylindrical cells were rendered, and emitters sampled as described
above. To simulate membrane fluorescent cells, fluorescent emitters were
sampled only within a single pixel layer corresponding to the outermost cell
volume.We ensured to render images at a high resolution, allowing accurate
drawing of the cellmembrane. Rendering at a lower resolution, even a single
pixel would be significantly thicker than the true thickness of the cell
membrane.

Simulated images of fluorescent single cells, either with cytoplasmic
markers or membrane markers, were generated at different wavelengths,
widths and depths of focus. It is important to note here that when the depth
of field is changed, this is a simulation of a non–physical effect. In actuality,
the volume of out-of-focus light captured by the microscope is determined
by the objective lens. By adjusting the number of Z-PSF layers with which
the 3D cell volume is convolved, the non-physical manipulation of out-of-
focus light collection by the microscope’s objective is simulated. Despite its
non-physical nature, this is a valuable exercise for identifying sources of
measurement bias and error. A similar argument applies to diffraction: the
use of an identity kernel simulates an image devoid of diffraction effects.
Though non-physical, this is instrumental in examining how an image is
compromised by themicroscope’s PSF. In real experiments, bothprojection
anddiffraction effects co-occur; hence, the comparative analysis is limited to
simulated images that incorporate both phenomena.

Cell size quantification and analysis. Following the simulation of
individual cells, errors in size estimation attributable to diffraction and
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projection were quantified using two methodologies. For cells marked
with cytoplasmic fluorescence, a binary mask of the resultant synthetic
image was generated employing Otsu’s thresholding algorithm53.
Dimensions along the two principal axes of the binary object were then
calculated to determine length and width. In contrast, for synthetic
images featuring fluorescent membrane markers, dimensions were
determined by measuring the inter-peak distance along the one-
dimensional intensity profile, which was aligned with the two principal
axes of the cell.

Simulations of fluorescence images of microcolonies of cells. The
agar pad simulation feature of SyMBac was used to generatemicrocolony
simulations12, each of which was terminated when reaching a size of 1000
cells. All microcolonies are restricted to monolayers. This pipeline
leverages theCellModeller platform, which is integrated into SyMBac, for
the creation of ground-truth microcolonies54. For these simulations, a
constant cell width of 1 μm was maintained, with cellular division pro-
grammed to occur at a target length of 3.5 μm±Uniform(−0.25 μm,
0.25 μm) resulting in sequences of densely packed, proliferating colonies.

Individual cells in each colony simulation contain uniformly dis-
tributed fluorescent emitters. To control the coefficient of variation (CV) of
intensity among the cellswithin amicrocolony,wefixed themeandensity of
emitters within a cell but varied the variance of a truncated (at 0) normal
distribution in order to sample single-cell intensities with a desired CV. The
CV was sampled between 0 and 0.3. Synthetic images from these colonies
were generatedwith 3Dconvolution in the samemanner as described in the
previous section, but with multiple PSFs: (1) a theoretical PSF being ren-
dered for a 1.49NA objective, a refractive index of 1.518, a working distance
of 0.17mm, and with imaging wavelengths of 0.4 μm, 0.55 μm and 0.7 μm
for separate simulations. (2) the same ground-truth data were convolved
with an instrumental PSF captured from a Nikon 100× 1.49NA Plan Apo
Ph3 objective lens with the same parameters described, imaged at 0.558 μm
wavelength light (bandwidth 40 nm) and (3) the effective PSF fit of the
instrumental PSF to simulate long range diffraction effects. This generated
synthetic microscopy images and corresponding ground-truth masks of
microcolonies under varied imaging conditions.More details on simulation
and examples can be seen in Supplementary Video 1.

Colony image intensity quantification and analysis
Quantification of single-cell intensities from synthetic microcolonies. Cal-
culating the intensity of each cell within the synthetic microcolony images
did not require segmentation because the ground truth mask positions are
available from the simulations. Thus, for each ground truth mask, the
average intensity in the corresponding position in the synthetic microscope
image was enumerated and used to calculate the CV, which could be
compared to the ground truth CV. To assess whether the ground truth CV
can be recovered under ideal circumstances, we performed
Richardson–Lucy deconvolution (with 100 iterations) using the original
PSF55,56. The deconvolvedCVcan then be compared to the ground truthCV
by enumerating the deconvolved image’s average intensity within each
ground truth mask position.

Thedistance of each cell fromthe centre of the colonywas calculatedby
calculating each cell’s Euclidean distance to the mean position of all cells
within the colony (the colony centroid). The distance was normalised by
dividingby themaximumFeret’s radius of the colony as calculated by Scikit-
image’s regionprops function57. The number of neighbours for each cell was
calculated by first dilating all cell masks by 4 pixels to ensure that neigh-
bouring cell masks touch. Themask image was then converted into a region
adjacency graph, where each node is a cell, and edges represent a neighbour
connection between two cells (cells that touch). The graph is then traversed
and each node’s degree (corresponding to that cell’s neighbour number) is
enumerated (Fig. 5c).

Quantification of single-cell intensities from experimental micro-
colonies. Experimental microcolony data were analysed using the same

methods as synthetic microcolonies but were first segmented in phase
contrast using the Omnipose model to generate masks (example given in
Supplementary Information 24 since only average intensity per cell is
required, it is not critical to have very accurate size estimation). For
datasets generated this way, there is no ground truth intensity estimation.
Fluorescence images were first background subtracted by subtracting the
mean of the lowest 5% of pixel intensities within the image. Mean cell
intensity was defined as the sum of the pixel intensities within eachmask,
divided by the cell mask area. Deconvolution was performed using the
iPSF and the ePSF, and the intensity of deconvolved cells recorded. Since
no ground truth data exists, we did not estimate the CV of real data but
rather focussed on showing the effects of colony size, cell neighbour
number, and cell position within a colony on the observed cell intensity.
These values were quantified using the same methods as for synthetic
colonies.

Manual annotation platform and analysis. To assess the effects of
projection and diffraction on the performance of manual (human)
annotation of cells (for the purposes of training data preparation), five
individuals were each asked to annotate the same dataset of 600 simulated
cells, where the ground truth was known but not disclosed to the anno-
tators. The cells had an averagewidth of 1 µm, andwere partitioned into 4
possible groups: projection “off” cells (cells where the imaging DoF is 1
pixel wide)/projection “on” cells (where the depth of field contains the
entire 3D cell), and cells imaged with a fluorescent emitter capable of
emitting 0.2 µm wavelength light, and a 0.6 µm wavelength light emitter,
distributed with a density of 0.4 emitters per volume element within each
cell. One-hundred fifty of each cell type were scattered with uniform
random position and orientation on a 2048 × 2048 plane with a pixel size
of 0.065. Convolution for the two wavelengths was performed once again
with the Aguet PSF model. Camera noise was added after convolution
using SyMBac’s camera class, using a baseline intensity of 100, a sensi-
tivity of 2.9 analogue-digital units/electron, and a dark noise variance of
8. Annotators ran a Python script which presented them with a Napari
window58 and a layer upon which to label cells. The order in which the
images with various effects were displayed was randomised.

Deep-learning models for image segmentation. In addition to com-
paring human annotation accuracy, we sought to test the accuracy of a
pretrained model (in this case, Omnipose’s bact_fluor_omni model) on
simulated imageswhere the perfect ground truth dimension of each cell is
known. We generated 200 images containing on average, 200 synthetic
cells per image (approximately 40,000 total cells) according to the same
method described in the previous section, but with areas of synthetic cells
varying between 0.15 and 3.5 µm2. The PSF model used an imaging
wavelength of 600 nm. Ground truth mask and image pairs were saved.
Images were then segmented according to the recommended Omnipose
documentationwith the bact_fluor_omnimodel. Ground truth cellswere
matched with their prediction, and the IoU for each cell was calculated.

We then assessed the benefit of training a model on synthetic data
matching one’s experimental setup exactly. The performance gained by
training a model on an independent set of synthetic images with perfect
ground truth available was checked by generating a test set of 200 images
according to the aforementioned method. These were used to train a new
model according to the Omnipose documentation for 4000 epochs. The
4000th epoch model was then used to segment the original test data, and
ground truth cells were matched with their predictions, and the IoUs cal-
culated once again.

Analysis of cell wall labelled cells on agar pads. After the acquisition
of cells labelled with FDAAs, images were segmented with Omnipose.
Since size estimation of the cell by segmentation is not important, the
pretrained bact_phase_omni model was sufficient to segment the cells.
To ensure that all the signal from the fluorescently labelled cell wall was
captured, cell masks were binary dilated. After this, all individual cells
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were cropped, and Scikit-image’s regionprops function57 was used to
calculate the orientation of the cells and rotate them.

Simulations of fluorescence images of individual molecules
within cells. Fluorescent single-molecule images of single cells were
generated in the same manner as described before but with very few
emitters per cell (1–30). These low-density fluorescent cells were con-
volved with the tPSF (to capture high-frequency information, since long-
range effects are not needed for this analysis) using the layer-by-layer
technique previously described. All analyses were performed on 3 cell
types: (1) A typical 1 µm wide, 1 µm deep, 5 µm long cell, (2) an enlarged
2 µm wide, 2 µm deep, 5 µm long cell, (3) a cell trapped by the MACS10

platform, 2 µm wide, 0.6 µm deep, 5.5 µm long.
We employed two techniques to count the single molecules in these

cells. The first approach, which we term the naive approach, involved
sampling fluorescent emitters within the cell and partitioning the emitters
into 3 groups: (1) Molecules lost to depth of field; these were defined as
moleculesmore than 0.25 µmaway from the centre of the cell. (2)Molecules
lost todiffraction; theseweredefinedasmolecules residingwithin 1Rayleigh
diffraction limit of at least one othermolecule (with amodification term for
the defocus, approximated by the model for the broadening of a Gaussian
beam59). (3) Resolved molecules; these are the sum of any remaining
resolvable single molecules and clusters of molecules within 1 Rayleigh
diffraction limit of another (appearing as a single molecule). Rather than
applying image processing techniques to count spots, this approach allowed
us to identify and partition different sources of miscounting error.

The second approachwe applied was Deep-STORM50, a deep learning
method for super-resolution single-molecule localisation. A more sophis-
ticated method such as this should perform better than the naive method
since it can learn to use defocus, changes in local intensity, and local spatial
patterning information to better estimate the number of molecules in a
region. We trained Deep-STORM by downloading and modifying the
ZeroCostDL4Mic60 implementation for local use. While Deep-STORM is
typically trainedon simulateddata and comeswith its own simulator, it does
not take into account thick samples such as the depth of entire bacterial cells
where defocus is appreciable. Therefore, we generated our own synthetic
training data by reducing the number of fluorescent emitters in each cell to
between 1 and 30. Individualmodelswere trained for the regular cell and the
MACS cell, both with SNRs (signal-to-noise ratios) of 8, which is typical for
a bacterial single-molecule experiment.

All image simulation and image analysis methods made heavy use of
scikit-image, NumPy, CuPy and SciPy57,61–63.

Methods for experimental validation
Strain preparation. For imaging cells labelled with membrane stains, we
used the strain E. coliMG1655 7740ΔmotAwith no fluorescent reporter.
Cells were grown overnight from a glycerol stock in LB medium at 37 °C
with 250 RPM shaking. The following day, cells were diluted by 100× into
1 mL of fresh LB. The fresh LB was supplemented simultaneously with
both HADA and RADA to a final concentration of 1 mM each. HADA
and RADA get incorporated into the bacterial cell wall during growth,
allowing imaging of only the cell outline using fluorescence
microscopy64,65. Cells were allowed to grow in the presence of the FDAAs
for 2 h, after which a 300 µL aliquot was spun down and washed with
phosphate-buffered saline (PBS) according to the protocol in66, taking
care to ensure that cells were kept on ice between washes and when not
being used.

For imaging microcolonies of fluorescently tagged cells, we used the
strain E. coli MG1655 7740 ΔmotA with a constitutively produced cyan
fluorescent protein (SCFP3A, FPbase ID: HFE84) under the control of
prpsL. Cells were grown overnight from a glycerol stock in LB medium at
37 °C.The followingday, cellswere dilutedby200× in freshLBandgrown to
anODor 0.1–0.2 to ensure large cell size. Once the desiredODwas reached,
1mL of cells were spun down at 4000×g for 5min, and the pellet resus-
pended in PBS for imaging.

Single-cell imaging onagar pad. Agar pads were prepared according to
the protocol described in Young et al.27. Since only snapshot microscopy
was to be performed, agar pads were instead preparedwith PBS instead of
growth medium, and were kept as consistently thick as possible. Agar
pads were cut to approximately 22 × 22 mm, and placed upon a
22 × 40mm coverslip. Cells on the agar pad were imaged using a Nikon
ECLIPSE Ti2 inverted microscope using a 100× (NA = 1.49) objective
with F-type immersion oil (n = 1.518) with a second 1.5× post-
magnification lens inserted, for an effective magnification of 150×. The
camera used was an ORCA-Fusion C14440-20UP digital CMOS camera
fromHamamatsu, with a pixel size of 6.5 µm × 6.5 µm. Cells stained with
HADA were imaged with excitation light: 365 nm, 435 nm filter, 100%
power, 1 second exposure. RADA was imaged with excitation light:
561 nm, 595 nm filter, 100% power, 0.5 s exposure. Focussing and field of
view selection was again done using phase contrast, but special care was
taken to account for chromatic aberration by adjusting the Z-plane offset
between the focussed phase contrast image and the RADA and HADA
images. This was crucial to ensuring that the cell wall was in focus in
each image.

Imaging microcolonies on agar pads. Since cells can change their
intensities during growth on an agar pad, we image preformed colonies to
image the effects of diffraction on the cells (example images shown in
Supplementary Information 11 and Supplementary Information 15). To
generate preformed microcolonies, a higher OD of cells (0.1–0.2) was
preferred. 3 µL of cell suspension was pipetted directly onto the agar pad
and allowed to “dry” for 5 min, after which a second 22 × 40 mm cov-
erslip was placed upon it. Agar pads were then immediately imaged using
the ECLIPSE Ti2 inverted microscope using a 100× (NA = 1.49) objec-
tive. This enabled us to collect samples of cell clusters (preformed colo-
nies) of various sizes. To avoid photobleaching, well-separated fields of
view were first selected and focussed on phase contrast. Fluorescent
images were captured by excitation with 440 nm light at an LED power of
50% for 900 ms (light source: Lumencore Spectra III Light Engine), and
with a filter wavelength of 475 nm. Images were captured as multi-
dimensional 16-bit ND2 files for further analysis.

Imaging cells in the mother machine. The mother machine chips were
prepared and loaded with cells according to the protocol described in
Bakshi et al.46. A single mother machine lane was supplied fresh LB by a
syringe pump at 15 ul/min. Cells in the mother machine were imaged
using the Nikon ECLIPSE Ti2 inverted microscope with a 40× (NA =
0.95) objective lens with a 1.5× post-objective magnification lens. The
time-lapse images were acquired using the Hamamatsu ORCA-Fusion
Digital CMOS camera, with a pixel size of 6.5 μm× 6.5 μm. Samples were
illuminated with a brightfield light source and a fluorescence light source
(Lumencor Spectra III) at 3 min intervals for 5 h. Fluorescence images
were captured at fast scan mode with a 594 nm excitation LED at 100%
power for 100 ms exposure time, and a 632 nm filter.

Point spread function acquisition. Our microscope’s (a Nikon
ECLIPSE Ti2) point spread function was captured using fluorescent
0.1 µm TetraSpeck Microspheres from Invitrogen. Slides with fluor-
escent microspheres were prepared according to67, with the only
changes being a bead dilution of 1000×, and the use of Fluoromount-G
MountingMedium from Invitrogen. PSFswere captured using 0.70NA,
0.95 NA, and 1.49 NA objective lenses, with magnifications of 20×, 40×,
and 100×, respectively. PSFs were captured with and without the
addition of a 1.5× post-magnification lens. Z-stacks were taken of the
beads with 0.05 µm spacing. The most in-focus Z-stack was determined
by taking the radial profile of the PSF and finding the Z-slice with the
highest peak intensity and narrowest FWHM. Intensity peaks were then
found and beads were selected to maximise the crop area. Bead stacks
were then centred around the mean peak intensity and averaged to
produce a low noise iPSF.
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Data availability
Sample datasets, including instrumental point spread functions,microscope
images of membrane-stained cells and microcolonies, synthetic bench-
marking data and mother machine data have been uploaded to https://
zenodo.org/records/10525762 68.

Code availability
All code written for this paper, and used to generate figures is uploaded to
https://github.com/georgeoshardo/projection_diffraction 69. For backward
compatibility, the version of SyMBac used in this paper has been frozen and
included in this repository.
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